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Automated Problem Analysis

• Problem analysis is very difficult
• for administrators and debuggers alike
• ever-worsening as scale grows

• Goal: automate it and get proactive
• failure detection and prediction
• problem determination (causes and effects)

• How: instrumentation plus statistical tools
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• Goal: identify failed components and root cause 
• guiding repair and prevention of recurrence

• Very challenging in large-scale environment
• can have multiple manifestations with a single cause
• can have multiple causes for a single manifestation
• problems and/or their manifestations can “travel”

among communicating components
• … and might just be workload change

Problem determination is very difficult
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A bit more on approach

• Collect and orchestrate instrumentation
• explicitly reported “events”

• significant changes/hiccups observed by components

• activity tracking
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Activity tracking instrumentation

• Tracks requests along execution path
• trace records logged (at ~200 strategic points)
• < 5-6% overhead on performance and storage space

• Post-processed for data needed
• per-workload, per-resource demands
• per-request flow and latency maps

• Multiple uses
• problem diagnosis, of course
• also for guiding tuning (automatically or otherwise)
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A bit more on approach

• Collect and orchestrate instrumentation
• explicitly reported “events”

• significant changes/hiccups observed by components

• activity tracking
• Statistical tools (e.g., machine learning)

• there are many, with different strengths/weaknesses
• example usages

• sample usage of resource X periodically and mine for 
anomalies in the time series data

• categorize requests according to measured characteristics and 
watch for changes in (1) the set of categories or (2) the 
percentages of requests in each category
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Summary
• End goal: self-healing (autonomics; Self-* Storage)

• automatically detect, diagnose, and repair problems
• or, better, replace “detect” with “predict” and be proactive

• Least understood aspect: the “diagnose” step
• need deep instrumentation
• automatically identify failed components (to repair)
• automatically identify root causes (to prevent recurrences)

• Some key sub-questions
• trade-off between instrumentation detail and accuracy
• pros/cons of different algorithms for different problems
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